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Random dynamics of the Hodgkin-Huxley neuron model
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Noise can alter the response of neurons, enhancing their ability to detect weak inputs. We analyze how the
Hodgkin-Huxley equations, a canonical neuron model, respond to white noise stimulation. We show that this
model possesses a stochastic attractor, reduced to a unique stochastic equilibrium point that attracts all trajec-
tories.
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Neurons operate in fluctuating environments and are
subject to internal variability. Both sources of noise play
important part in shaping the response of neurons@1#. Nota-
bly, they can increase their sensitivity to weak stimuli@2#, a
feature that may present behavioral@3# and biomedical@4#
advantages. The purpose of the present study is to ana
how neurons respond to noiselike inputs. The application
the understanding gained in this way are twofold. On the
hand, it sheds light on the mechanisms underlying the in
ence of noise on neuronal coding. On the other hand, it
termines how such inputs — which occur in central neuro
@5#, and have been extensively used in experiments@6,7# —
are encoded. To carry out our program, we investigated
random dynamics of a canonical neuron model, namely
Hodgkin-Huxley~HH! equations@8#.

The stochastic HH equations form a system of four d
ferential equations:

dV

dt
5GNam

3h~VNa2V!1GKn4~VK2V!1Gl~Vl2V!1j,

dxi

dt
5

x`
i ~V!2xi

tx
i ~V!

1< i<3, ~1!

whereC is the membrane capacitance,GNa , GK , andGl are
the maximal sodium, potassium, and leak conductances
malized by membrane capacitance,C, VNa , VK , andVl are
the corresponding reversal potentials, andj is the white
Gaussian noise of intensitys. In the second equation,x1 , x2,
andx3 represent the gating variablesm, h, andn. The param-
eter values and the auxiliary functions are the same a
@9,10#. They satisfy 0,x`

i ,1 andtx
i .0. In the absence o

noise, the HH model has a unique globally asymptotica
stable equilibrium point, which represents the resting stat
neuronal membrane.

The transition probability density function~PDF! associ-
ated with Eq.~1! represents the probability to reach any po
X5(V,m,h,n) at a timet, given the position of the system a
a times, with s,t. In the long run, i.e.,t→` the transition
PDF becomes independent from the initial state: it repres
the stationary distributionp* of the system. In other words
starting from any initial distributionp05p(V,m,h,n,0) of
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initial points, the densityp(V,m,h,n,t) of the solutions of
Eq. ~1! eventually stabilizes atp* . Practically, p* is the
distribution of the values taken by any solution of Eq.~1!
over a long time interval. For the HH model,p* has a
Gaussian-like shape centered on the equilibrium point, at
noise intensities. It takes on a different form due to no
induced firing at large noise levels. For instance the jo
distribution ofV andn presents a marked loop representi
frequent noise induced suprathreshold excursions and th
sulting action potentials. The progressive transformat
from the former to the latter~Fig. 1! takes place in a narrow
noise range, previously referred to as noise induced tra
tion @9,10#. This phenomenon has been also observed
analyzed in other neuronal models, such as the FitzHu
Nagumo, the active rotator and the leaky integrator, and
implication for neuronal coding, notably spike timing prec
sion has been analyzed and discussed in@9–12#.

The stationary distributionp* contains only partial infor-
mation about the behavior of the stochastic system Eq.~1!
because it provides a static picture. The present work is c
cerned with dynamical aspects, notably the phase portra
the random dynamical system~RDS! defined by Eq.~1!. In a
deterministic dynamical system, the phase portrait dep
the general organization of the trajectories in the ph
space. It is constructed by computing the orbits of init
conditions. Similar studies are possible for RDSs. We p
vide a brief description of the concepts used in our stu
and refer to the comprehensive monograph@13# for a thor-
ough treatment.

We label byv a given sample path of the noisej(t),

FIG. 1. Stationary distribution of the HH model. The joint di
tribution is shown in theV-n phase plane. Noise intensities ares
51 ~left panel! and 2.5 (ms)1/2 mA/cm2 ~right panel!. Histograms
were constructed from 10 000 simulated units using bin size 1
in along theV axis and 0.01 alongn axis.V is expressed in mV,n
is dimensionless, and the vertical axis is in 1/mV.
©2001 The American Physical Society02-1
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formally, we writev5$j(t)%2`,t,` , and we denote byV,
the set of allv. Schematically, for a fixedv, Eq. ~1! can be
studied in the same way as a nonautonomous determin
system. For instance, one can wonder whether it possess
attractor, and if so, what the structure of this attractor
Carrying such a task for allv would be daunting. Fortu-
nately, it is unnecessary. The random dynamical sys
theory provides the proper framework to derive the behav
of the system and representative phase portraits for typ
sample pathsv, and even discuss qualitative changes
these based upon single solutions of Eq.~1!. The following
paragraphs clarify these general considerations; first thro
the discussion of a significant example, and then through
analysis of the stochastic HH dynamics. Rigorous definitio
and mathematical analyses can be found in@13#.

We consider a system satisfying

du

dt
52gu1j~ t !, ~2!

whereg.0 is constant, andj(t) is the white Gaussian nois
of intensitys. The solution of Eq.~2!, taking the valueu0 at
t5t8, and the noise sample pathv can be formally written as

u~ t,t8,u0 ,v!5e2g(t2t8)u01E
t8

t

e2g(t2s)j~s!ds. ~3!

Clearly, except for particular, unrepresentative realizati
v, these solutions do not stabilize at a constant or perio
behavior, but display sustained undamped irregular fluc
tions throughout time. These oscillations not withstandi
for a fixedv, the difference between any two solutions ten
exponentially fast to zero:u(t,t8,u0 ,v)2u(t,t8,u1 ,v)
5exp(2g(t2t8))(u02u1). In fact all solutions converge to
single oneu* (t,v)5*2`

t exp@2g(t2s)#j(s)ds. This specific
solution plays an important part in the phase portrait of
stochastic system.

Each random selection ofv yields a different realization
of u* , so thatu* is a stochastic process. In fact,u* is a
stationary stochastic process, in the sense that its mean,
ance, autocorrelation, and other higher order moments do
depend on time. In this respect,u* is time-invariant and
plays the same role as an equilibrium for deterministic
namical systems. Such stationary processes solutions of
chastic differential equations are referred to as stocha
equilibrium points.

As pointed out above, solutions of Eq.~2! keep fluctuat-
ing throughout time. This makes it impossible to actua
represent a stochastic equilibrium point by a single poin
t→`. More generally, one encounters the same difficulty
representing attractors of stochastic systems because the
time-dependent. The way out of this is the pull-back meth
rather than starting the system at timet850 and examining
the asymptotic regime ast→`, the system is initiated a
some timet8 in the past, i.e.,t8,0, and allowed to run until
t50, and the asymptotic behaviort8→2` is investigated.
Let us illustrate this with Eq.~2!. Taking t50 and the limit
t8→2` in Eq. ~3! yields
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lim
t8→2`

u~ t50,t8,u0 ,v!5 lim
t8→2`

egt8u01E
t8

0

egsj~s!ds

5E
2`

0

egsj~s!ds

5u* ~0,v!. ~4!

Thus the pullback shows that Eq.~2! has a unique stochasti
equilibrium point which is globally asymptotically stable
i.e., attracts all other solutions. Furthermore, using the p
back method, this stochastic equilibrium is represented
u* (0,v), which does not depend on time any more: in oth
words, it is a random variable, rather than a stocha
process.

The above example illustrates the concept of stocha
fixed points and the pull-back method that can be used
obtain information about the phase portrait of noisy syste
A concept, more general than equilibria, used in the desc
tion of the asymptotic behavior of deterministic dynamic
systems is that of attractor@14#. Essentially, a deterministic
dynamical system possesses an attractor when all traject
eventually enter and remain within some bounded region
the phase space. This concept can be extended to stoch
systems in the same way that was discussed for equili
@13#. Schematically, a random dynamical system possess
stochastic attractorA(v) if for almost all v, all trajectories
started att852` are within a bounded regionB(v) at the
time t50. In such a case the stochastic attractorA(v) is
what ‘‘remains’’ at t50 from the pull-back method when
t8→2`. For example, for Eq.~2!, the stochastic attractor i
a single pointA(v)5$u* (0,v)%. In the following, we argue
that the situation is similar for the stochastic HH model.
this end, first we show the existence of a stochastic attra
for this model, and then determine its nature from numeri
computations.

The fact that Eq.~1! possesses a stochastic attractor is d
to two properties. The first is that the gating variablesm, h,
and n are bounded between zero and one, regardless o
noise realizationv. The second is the similarity between th
first equation in Eq.~1! and Eq.~2!. Indeed, the equation fo
the dynamics ofV can be rewritten as

dV

dt
5G~ t !~a~ t !2V!1j, ~5!

where G(t)5GNam
3h1Gkn

41Gl , and a(t)
5(GNam

3hVNa1Gkn
4VK1GlVl)/G(t), so that 0,Gl

,G(t),(GNa1GK1Gl) and min(Vrev),a(t),max(Vrev),
where Vrev5VNa , VK or Vl . Defining v and y as v(t)
5*2`

t exp(2*s
tG(r)dr)G(s)a(s)ds and y5V2v2u* , we

have

dy

dt
52G~ t !y1„g2G~ t !…u* ~ t,v!, ~6!

so that forg satisfying 0,g,Gl , there exist positive con-
stantsb andg such that
2-2
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dy2

dt
<2by21g@u* ~ t,v!#2, ~7!

so that, with notations similar to Eq.~3!, we have

y2~ t,t8,y0 ,v!<e2b(t2t8)y0
21gE

t8

t

e2b(t2s)@u* ~s,v!#2ds.

~8!

Using the pull-back, method, i.e., settingt50 andt8→2`,
we have

lim
t8→2`

y2~0,t8,y0 ,v!<E
2`

0

ebs@u* ~s,v!#2ds. ~9!

The above shows that there is a boundR(v) for the pullback
of y. Given thatV5y1v1u* , and that the pullback of eac
of these three quantities is bounded, the same holds for
of V. Combining this with the boundedness of the gati
variables suffices to establish the existence of a stocha
attractorA(v) for Eq. ~1! @13#. In the following, we discuss
the structure of this attractor.

At the limit of zero noise, the stochastic attractor is r
duced to the unique equilibrium point of the HH, and t
system is globally asymptotically stable. The situation is
same at low noise levels, in the sense that the random
namical system remains globally asymptotically stable wit
unique stochastic equilibrium point playing the same role
that of the deterministic system. In other words, the l
noise behavior of stochastic HH equations is similar to t
of Eq. ~2!. Given that the shape of the stationary distributio
p* changes when noise is increased~Fig. 1!, the question is
whether this noise induced transition is concurrent with
qualitative change in the stochastic attractor of the mo
Such a qualitative change is referred to as a dynamical
chastic bifurcation@13#. For a random dynamical system
stochastic bifurcations are detected as a sign change in
Lyapunov exponents of the system. These exponents are
fined in a way similar to those of deterministic dynamic
systems, and thanks to the ergodicity of the stochastic
tem, they take on the same value for almost all initial con
tions and almost all noise sample pathv. This same ergod-
icity ensures in fact that when the dynamics of the system
confined within some bounded region, a negative lead
Lyapunov exponent implies that the solutions eventua
converge to a finite number of stochastic equilibria@15,16#.
In this sense, a negative Lyapunov exponent in a rand
dynamical system is more restrictive than negative real p
of the eigenvalues of the Jacobian matrix at an equilibri
point of a deterministic dynamical system.

Figure 2 represents the Lyapunov exponents of Eq.~1!
against the noise intensity. All four exponents are nega
and remain so at all noise levels, thus ruling out the prese
of dynamical stochastic bifurcations in this system. The
results suggest that the stochastic attractorA(v) is restricted
to a single stochastic equilibrium point at all noise leve
Pull-backs~Fig. 3! and time reversed simulations run at se
eral noise levels agreed with the above result~not shown!.
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In conclusion, we analyzed the dynamics of a noisy
nonical neuron model, namely the HH equations, from
perspective of random dynamical system theory. We show
that this system possesses a stochastic attractor that is in
a single globally asymptotically stable stochastic equilibriu
point. In the following paragraphs, we discuss first the g
erality of the results, and then their implications in terms
neuronal coding.

The first stage of our study consisted in proving the ex
tence of a stochastic attractor for the HH model. The pr
relied only on two properties of these equations, one that
gating variables are bounded, and second that the equa
governing the dynamics ofV has a linear dependence on th
variable, with bounded coefficients. These two properties
actually shared by all HH-type equations, modeling electri
activity of cellular membranes, regardless of the number
gating variables and transmembranar currents they im
ment. So that, our work establishes that all such biophys
membrane models possess stochastic attractors. The n
of this attractor is model dependent. For the HH model,

FIG. 2. The first three Lyapunov exponents of the HH model~in
ms21) against noise intensity@in ~ms!1/2m A/cm2]. For each noise
amplitude, the exponents were estimated from eight simulati
lasting 100 000 ms, from which the starting 5 000 ms were d
carded, using the algorithm in@17#, with a step of 0.05 ms. The
fourth Lyapunov exponent was also computed~not shown! and was
found to decrease from25.3 to 29.8 for the same noise range.

FIG. 3. Pullbacks of the noisy HH model fors53, at t5
21 ms ~upper left panel!, t8525 ms ~upper right panel!, t85
220 ms~lower left panel!, and t85250 ms~lower right panel!,
for a starting grid ofN510 000 initial conditions positioned a
V(t8)5VK1( j 21)(VNa2VK)/N, m(t8)5m`„V(t8)…, h(t8)
5n(t8)51/2N1(k21)/N, with j, k51, ••• N. Abscissae,V ~in
mV!, ordinates,n ~dimensionless!.
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found it to be a single stochastic equilibrium point. Th
result generalizes our previous analysis carried in the cas
the leaky integrate and fire model@12#.

For the HH model, our results reveal a striking differen
between the response to periodic stimulation and fluctua
noise like inputs. Indeed, for the former, increasing the in
amplitude leads to successive bifurcations separating
gimes, such as subthreshold oscillations and suprathres
phase lockings. In contrast, modifying the intensity of t
noiselike inputs does not induce any dynamic stochastic
furcation as attested by the constant sign of the Lyapu
exponents. From the standpoint of neuronal coding, this
O
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bal asymptotic stability of the stochastic equilibrium poi
means that to each input realizationv, there corresponds a
unique asymptotic response. In other words, if an HH mo
is presented with the same input realizationv at different
occasions, it will present the same response~possibly after a
transient!, even if initially it was at a different state. In thi
sense, the response evoked by such inputs is reliable, a
nomenon that has been observed in a large number of ex
mental preparations, including invertebrate as well as ve
brate neurons@7#.

K.P. would like to thank Professor Ludwig Arnold fo
suggesting the method to prove that HH equations adm
stochastic attractor.
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